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Mathematical modeling and numerical calculation of thermolysis of organic materials were conducted in the
medium of superheated vapor by an example of rubber.

The use of wastes in industry is an urgent problem. At present, combustion is the main method of their utili-
zation. However, this is economically wasteful and ecologically harmful. An alternative method of reprocessing of
wastes is thermolysis in the medium of inert gas.

In [1], thermal methods of reprocessing of biomass, rubber, and plastic wastes in the medium of superheated
vapor are considered. This method offers promise since it reduces to minimum the danger of explosion and discharge
of harmful substances to the surrounding medium.

The process of treatment of organic wastes by superheated vapor passes through several stages. At the first
stage, the surface of the material is heated by superheated vapor to a certain initial temperature. Till the surface tem-
perature is below the dew point, vapor condenses on it. This causes intense heating of the surface at the expense of
the energy of phase conversion. The condensing vapor forms a liquid film on the surface, which fills the pores be-
tween the particles and is absorbed by the porous space of the particles themselves. At the second stage, water evapo-
rates from the material, which impedes the process of material heating since a portion of energy is spent for
evaporation. The stage terminates with complete evaporation of moisture. The third stage is characterized by heating of
the material without phase conversions and chemical reactions. It ceases when the surface reaches a temperature Td.
The fourth stage begins with destruction of the solid phase. Not the entire solid phase, but only a part of it (mainly
the binder) is destroyed. This stage results in thermal decomposition of the material.

Processing of the material (e.g., worn rubber tires) as a whole has its advantages, since the stage of prelimi-
nary comminution of the material is eliminated, which allows one to reduce energy consumption. However, in a num-
ber of cases this leads to a decrease in the efficiency of equipment due to ineffective use of the reaction space.
Therefore, to improve the efficiency of pyrolysis systems, wastes are precomminuted. We consider both variants.

We consider the problem of thermolysis of rubber tires as a whole. Rubber tires having a temperature of T0
= 20oC are loaded (one over another, thus forming a cylinder) into the reactor with a height H = 2 m and a base area
S = 1 m2. Superheated vapor with a temperature T∞ = 500oC and density ρv = 0.322 kg/m3 is supplied from below
to this structure at a velocity vv = 0.1 m/sec. The vapor heats the rubber to Td = 400oC, the heat of rubber thermod-
estruction Qd = 600 kJ/kg, and the heat of evaporation of liquid products Qev = 300 kJ/kg. In decomposition of rub-
ber, 40% of its initial mass is removed by water vapor in the form of gas. Then, the vapor-gas mixture is separated
by cooling into the liquid fraction and gas fuel, which is used to maintain the process of thermolysis. The remainder
is solid carbon.

The estimates made [2] showed that under the conditions considered the flow is laminar. Therefore, we as-
sume that the flow follows the contours of the tire surface. In this case, the complex inner surface of the tire can be
substituted by a smooth cylindrical surface. Here, the effective thickness of the cylinder wall is taken to be 0.013 m
and the outer radius Rout = 0.55 m.

The coefficients of mass transfer of vapor βv and the products of decomposition of rubber wastes βg which
were obtained in [2] are 3.87⋅10−8 kg/(m2⋅sec⋅Pa) and 2.0⋅10−4 m/sec, respectively. The concentration of gaseous prod-
ucts of decomposition near the phase interface is Cs = 3.62 kg/m3.
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Let heat fluxes at the ends of the hollow cylinder be zero and heat fluxes through inner and outer side sur-
faces be independent of coordinates; then the temperature changes only along the radius. The geometric scheme of the
problem is given in Fig. 1. Here, 1 is the carbon remainder and 2 is the initial tire. Since the cylinder is heated from
both inner and outer surfaces, two phase fronts, whose boundaries are determined as ξ1(τ) and ξ2(τ), exist in the wall.
If the products evaporate from the outer surfaces, then Qph = Qd, and evaporation is taken into account in the corre-
sponding boundary conditions. If evaporation occurs on the front of phase transition inside the material, then Qph =
Qd + Qev.

At the first stage, when water vapor condenses (or evaporates) on the surface, we have

(cρ)t 
∂T2

∂τ
 = div (λt grad T2)

(1)

and the boundary conditions are

λt grad T1 R1,R2
 = α (T∞ − Ts) + Qw βv (P∞ − Pv) . (2)

When all water evaporates from the surface, Eq. (1) remains the same and the boundary conditions take on the form

λt grad T1 R1,R2
 = α (T∞ − Ts) . (3)

When the surface reaches the temperature of destruction, the system of differential equations is written as

(cρ)c 
∂T1

∂τ
 = div (λc grad T1) ,   R1 < r < ξ1 (τ)   and   ξ2 (τ) < r < R2 ; (4)

(cρ)t 
∂T2

∂τ
 = div (λt grad T2) ,   ξ1 (τ) < r < ξ2 (τ) , (5)

and evaporation on the surfaces must be taken into account:

Fig. 1. Geometric scheme of the problem of thermal decomposition of rubber
tires in the form of a cylinder.
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λc grad T1 R1,R2
 = α (T∞ − Ts) + Qev βg (Cs − C∞) . (6)

On the boundaries of phase transitions we have

− λc grad T1 ξ1
 + λt grad T2 ξ1

 = ρtQph 
∂ξ1

∂τ
 ,   T1 ξ1

 = T2 ξ1
 = Td ; (7)

− λt grad T2 ξ2
 + λc grad T1 ξ2

 = ρtQph 
∂ξ2

∂τ
 ,   T1 ξ2

 = T2 ξ2
 = Td . (8)

To calculate vapor flow we must know the pressure of saturated vapor of water near the surface Pv. To do
this we use the formula

Pv = 2⋅10
4
 exp 




15.3⋅T − 333

T



 . (9)

A control-volume approach was used for solution of the problem formulated. The difference scheme was cal-
culated by the marching technique. The algorithm constructed allows solution of the problem with several simultane-
ously existing fronts of phase transition since the cylinder is washed by superheated vapor from both inside and
outside. In this case, we took into account the following phase transitions: water–vapor and gas–liquid products of de-
composition–solid material.

The following supplementary data were used in the calculations: ρt = 1120 kg/m3, ct = 1830 J/(kg⋅K), λt =
0.15 W/(m⋅K), ρc = 1650 kg/m3, cc = 692 J/(kg⋅K), λc = 0.17 W/(m⋅K), and α = 8 W/(m2⋅K).

As a result of the calculations we obtained:
1. Initial heating of tires from the surrounding temperature to 100oC. In this case, heating occurs due to heat

transfer and heat of the phase transition. The maximum heat flux which forms as a result of phase transition in conden-
sation is equal to qv = 8903 W/m2; the same due to convective heat transfer is q = 3727 W/m2. The mass of condensed
vapor is mv = 920 g. The length of this stage is τst = 2 min, and the amount of consumed energy is Q = 7.5 MJ.

2. Heating of tires from 100oC to the temperature of their destruction, 400oC. Heating takes place only due
to heat transfer. The maximum heat flux is q = 3176 W/m2. The length of the stage is τst = 42.5 min. The amount
of energy spent for heating is Q = 59.7 MJ.

3. Destruction of rubber and its evaporation. At this stage, the maximum heat flux due to heat transfer is q
= 801 W/m2; the same due to evaporation of rubber is qg = −217 W/m2. The time spent for destruction is τst = 63
min. The amount of consumed energy is Q = 37.6 MJ.

Figure 2 presents the dependence of the time of rubber thermolysis at α = 8 W/(m2⋅K) on the outer radius of
the tube Rout. As the radius increases the time of thermolysis decreases, and, consequently, with an increase in the sur-
face area of tires under pyrolysis the time of their destruction decreases; therefore, other conditions being equal, the

Fig. 2. Dependence of the time of thermolysis τth on the outer radius of the
tube Rout. τth, min.
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rate of thermolysis is higher in those packings of rubber tires where the surface area washed by the vapor-gas medium
is larger.

Further, we consider the process of thermal decomposition of crushed rubber wastes in the medium of super-
heated water vapor blown through the layer of wastes. We assume that the reactor, into which wastes are supplied, has
the same dimensions H and S as in the first case. Figure 3 shows the geometric scheme of the problem. Zone 1 is the
filling of solid products of decomposition (carbon particles), 2 is the zone of rubber particles at a temperature higher
than 100oC (therefore, water–vapor phase transitions are absent in it), 3 represents the particles with water condensed
on them, ξ1 is the boundary of the phase transition "rubber–gaseous products of decomposition," and ξ2 is the bound-
ary of the phase transition "water–vapor."

Moving through the porous filling, superheated water vapor carries heat, the amount of which (liberated in the
volume unit per time unit) is determined by the expression [3]

Qv = − Qw v grad ρsat − ρsat v cv grad T . (10)

The first term on the right-hand side of Eq. (10) reflects heat transfer due to phase transition related to con-
densation of water, and the second term — to convective heat transfer.

With the fact that heat conduction is characterized by the term div (λef(T) grad T), the equation of heat trans-
fer in the layer of wastes can be presented in the form

[(1 − ε) (cρ)t + ε (cρ)v] 
∂T

∂τ
 = div (λc,ef grad T) − 

cv ρsat v

ε
 grad T − 

Qw v

ε
 grad ρsat . (11)

In the initial period, when the filling is heated to a temperature of 100oC, we use Eq. (11) with the following
boundary conditions:

T2 ξ2
 = T3 ξ2

 = Tw ,   T x=0 = 500
o
C ,   q x=H = 0 . (12)

It is assumed that there are no heat fluxes through the side surfaces. These boundary conditions are retained
during the entire process of thermolysis.

When water evaporates from the surfaces of the particles in the filling, we have

[(1 − ε) (cρ)t + ε (cρ)v] 
∂T2

∂τ
 = div (λc,ef grad T2) − 

cv ρsat v

ε
 grad T2 . (13)

On the boundary of the phase transition we write

Fig. 3. Geometric scheme of the problem of thermal decomposition of crushed
rubber wastes.
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λt,ef 
∂T3

∂x
 − λt,ef 

∂T2

∂x
 − (ρvc)v (T3 (M + ∆h) − T2 (M − ∆h)) = νwερwQw 

∂ξ2

∂τ
 ,   T2 ξ2

 = T3 ξ2
 = Tw . (14)

When the filling is heated above the temperature of destruction Td, we must solve the following system:

[(1 − ε) (cρ)c + ε (cρ)v] 
∂T1

∂τ
 = div (λc,ef grad T1) − 

cv ρsat v

ε
 grad T1 ,   0 < r < ξ1 (τ) ; (15)

[(1 − ε) (cρ)t + ε (cρ)v] 
∂T2

∂τ
 = div (λc,ef grad T2) − 

cv ρsat v

ε
 grad T2 ,   ξ1 (τ) < r < ξ2 (τ) ; (16)

[(1 − ε) (cρ)t + ε (cρ)v] 
∂T3

∂τ
 = div (λc,ef grad T3) − 

cv ρsat v

ε
 grad T3 − 

Qw v

ε
 grad ρsat ,   ξ2 (τ) < r < H . (17)

On the boundary of the phase transition "rubber–gaseous products of decomposition" we have

λt,ef 
∂T2

∂x
 − λc,ef 

∂T1

∂x
 − (ρvc)v (T2 (M + ∆h) − T1 (M − ∆h)) = νt (1 − ε) ρtQph 

∂ξ1

∂τ
,  T1 ξ1

 = T2 ξ1
 = Td ,

(18)
and on the water–vapor boundary — (14).

Assuming the filling to be isotropic and consisting of spherical particles, we can use the formulas

λc,ef

λv
 = 1 + 

3 (1 − ε) (λc
 ⁄ λv − 1)

3 + ε (λc
 ⁄ λv − 1)

 ,   
λt,ef

λv
 = 1 + 

3 (1 − ε) (λt
 ⁄ λv − 1)

3 + ε (λt
 ⁄ λv − 1)

for calculation of the effective thermal conductivity.
Having applied formula (9) to the pressure of vapor Pv, we find the density of the saturated vapor from the

expression 

ρsat = 

2⋅10
4
 exp 




15.3⋅

T − 333
T





R (273 + T)
 . (19)

For the calculations we used the finite-difference scheme obtained by a control-volume approach. The problem
under consideration was solved on the basis of the locally one-dimensional scheme. In this case, the problem was split
into spatial variables. The technique allowed simultaneous account for the phase transitions "rubber–gaseous products
of decomposition" and "water–vapor." The algorithm and the program for calculation of thermolysis of crushed rubber
in the medium of superheated vapor stem from this technique. The results obtained are shown in Fig. 4.

Figure 4a gives the characteristic temperature distribution in the filling for different instants of time in the
presence of phase transitions "rubber–gas" and "water–vapor." The distribution of temperature is of a complex charac-
ter. Two inflection points which correspond to phase transitions are seen on the curves. Figure 4b presents the charac-
teristic temperature distribution in the filling in the presence of the rubber–gas phase transition. In this case, it was
assumed that the vapor which is filtered through wastes does not condense in the material. Comparison of results of
the calculation shown in Figs. 4a and b indicates the difference in the behavior of the temperature fields with time.
Total times of the process of pyrolysis are also different. For the first case it is the longest (Fig. 4a), and it is smaller
for the second case (Fig. 4b). In the first case, it is necessary to spend time and energy for heating the filling and for
the phase transitions associated with evaporation of the condensate and decomposition of the rubber; in the second
case, energy is spent up to the phase transition related to the decomposition of rubber. The difference in the dynamics
of the temperature fields is observed at the first stage of heating (depicted in Fig. 4c and d). Figure 4c characterizes
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the dynamics of temperature distribution in the filling in the presence of vapor condensation, whereas Fig. 4d shows
the same in its absence. It is seen from Fig. 4c that during a small period of time (relative to the duration of the en-
tire process) the temperature in the material reaches 100oC. This is due to condensation of vapor in the volume.

It follows from the analysis of the results obtained that the dynamics of the development of the temperature
field and of the field of moisture distribution are the same. This is confirmed by the fact that condensation of vapor
is the main reason for heating of the filling to a temperature of 100oC. Heating of the filling to a temperature of
100oC in the absence of phase transitions follows another pattern. In this case, the main mechanisms of heating are
heat conduction and convection, which lead to retarded heating of the filling. In the presence of the phase transition
caused only by rubber decomposition, the filling is heated similarly to the latter case (Fig. 4d). The difference appears
only when the temperature in the material reaches 400oC (onset of rubber decomposition). Despite fast heating of the
material to 100oC due to condensation of vapor, further heating of it goes more slowly since energy is spent for both
heating and phase transitions due to evaporation of water.

From the technological point view, the value of the temperature at the outlet from the reactor is of impor-
tance. At outlet temperatures of vapor below the dew point, condensation of vapor will take place, which is an unde-
sirable effect. If the vapor temperature at the outlet is too high, the efficiency of heat exchange between the vapor and
the material decreases. Optimum values of the vapor temperature are close to 300oC. These are precisely the condi-
tions under which it is possible for the products of decomposition of wastes to be removed from the reactor in the
gaseous state. With this in view, we conducted numerical calculations of the dependence of the time of process termi-
nation τfin on the height of the filling H; in these calculations, the time when the upper layer of the filling was heated
to a temperature T = 300oC was taken as the time of process termination. Calculations were made for three values of
the velocity of vapor supply vv = 0.02, 0.05, and 0.1 m/sec.

Calculations made by the mathematical models suggested indicate the dynamics of the development of heat
and mass transfer processes in thermolysis, which is in agreement with experimental data. The obtained values of the
time of thermolysis, the time of moistening of wastes, and the amount of condensed vapor are in agreement with ex-
perimental data.

Fig. 4. Temperature distribution in the filling of rubber wastes as a function of
time: in thermal decomposition and phase transitions "water–vapor" (a): 1) τ =
1; 2) 5; 3) 10; 4) 30; 5) 60; 6) 120; 7) 240; 8) 360; 9) 480; 10) 600; 11) 780;
12) 931 min; only in thermal decomposition (b): 1) τ = 10; 2) 60; 3) 120; 4)
180; 5) 300; 6) 420; 7) 600; 8) 780; 9) 960 min; in condensation of vapor (c):
1) τ = 0.17; 2) 0.5; 3) 1; 4) 2; 5) 3; 6) 4; 7) 5; 8) 6; 9) 7; 10) 8; 11) 9; 12)
10 min; in thermal decomposition during the initial period of time (d): 1) τ =
1; 2) 10; 3) 30; 4) 60; 5) 90; 6) 120; 7) 180; 8) 240; 9) 300 min.
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NOTATION

T, temperature, oC; Tw, temperature of phase transition "water–vapor," oC; Td, temperature of material destruc-

tion, oC; H, reactor height, m; S, area of the reactor base, m2; T0, initial temperature, oC; T∞, temperature of super-

heated vapor at the inlet to the reactor, oC; ρv, vapor density, kg/m3; vv, velocity of vapor, m/sec; Qd, heat of rubber

destruction, J/kg; Qev, heat of evaporation of liquid products of decomposition, J/kg; Rout, outer radius of a rubber tire,

m; βv, coefficient of mass transfer of vapor, kg/(m2⋅sec⋅Pa); βg, coefficient of mass transfer of gas, m/sec; Cs, gas con-

centration on the surface, kg/m3; Qph, heat of phase transition, J/kg; τ, time, sec; ρt, density of rubber, kg/m3; ct, heat

capacity of rubber, J/(kg⋅K); λt, thermal conductivity of rubber, W/(m⋅K); α, heat-transfer coefficient, W/(m3⋅K); R1

and R2, radii of the inner and outer surfaces, m; Qw, heat of evaporation (condensation) of water (vapor), J/kg; P∞,

pressure of vapor at a distance from the surface, Pa; Pv, pressure of saturated vapor of water near the surface, Pa;

Ts, temperature of vapor-gas medium on the surface, K; ρc, density of carbon remainder, kg/m3; cc, heat capacity of

carbon remainder, J/(kg⋅K); λc, thermal conductivity of carbon remainder, W/(m⋅K); r, radial coordinate, m; C∞, gas

concentration at a distance from the surface, kg/m3; 
∂ξ
∂τ

, velocity of motion of the front of phase transition, m/sec; q,

heat-flux density, W/m2; τst, stage duration, sec; mv, mass of condensed vapor, kg; Q, energy, J; Qv, heat source, J;

v, vector of vapor velocity, m/sec; ε, porosity of the filling; ρsat, density of saturated vapor of water, kg/m3; cv, heat

capacity of vapor, J/(kg⋅K); λef, effective thermal conductivity of the filling, W/(m⋅K); x, coordinate along the height

of the filling, m; ∆h, small quantity of the length in the direction perpendicular to the surface of phase transition, m;

M = 2∆h; R, gas constant, J/(kmole⋅K); λv, thermal conductivity of vapor, W/(m⋅K); νt, fraction of decomposed rub-

ber; νw, fraction of water in the pores. Subscripts: 0, initial value; 1, 2, and 3, refer to materials in the corresponding

zones of phase transitions; s, surface; st, stage; t, tire; th, thermolysis; w, water; ph, phase; b, boiling; fin, final; d,
destruction; c, carbon remainder; v, vapor; out, outer; sat, saturated; g, gas; ev, evaporation; ef, effective.
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